
Conditions on Minimization Criteria 
for Smoothing 

By Boris Podoisky and Harry H. Denman 

1. Introduction. Given a set of data points { Yi(xi) }, i = 1, 2, * , n, we wish 
to find the "smoothest" curve y(x) passing through or near the given -et of points. 
Let us assume that the criterion for smoothness is that the integral of some func- 
tion of y, y', and y" (where y' = dy/dx, etc.) be a minimum, i.e., 

r$n ( 1 ) a f f(y, y', y") dx = 0. 
X1 

As an example, we might minimize the integral (along the curve) of the square of 
the curvature, so thatf = (y",)2/(l + (y')2)512. 

However, the given data may come from physical measurements, where ar- 
bitrary units may be used for the physical quantities. If these points are plotted on a 
graph, the scales are usually chosen so that the set of points spans the available 
space oln the sheet. If we are dealing numerically with the set of numbers repre- 
senting these data, this method of selecting a scale is inappropriate. The problem 
here is to find f(y, y', y") in (1) such that the smooth function y(x) remains un- 
changed with respect to the set of points { YJ} when these points are displaced or 
changed by a scale factor. That is, if y(x) is a smooth function associated with the 
data { Yi}, and if these data undergo a linear transformation Yi = aYi + b, the 
new solution y of (1) should be y = ay + b. 

2. The Euler-Lagrange Equation. If we take the case where y and y' are known 
at x1 and xn, then the Euler-Lagrange equation resulting from (1) is 

(2) d2 of _ d (&f + df 0 
d~i koy"/ dx- VWy' dy 

Equation (2) is a fourth-order ordinary differential equation, which we may write 
as 

(3) L(y, y', y", y"', y"") = 0. 

We shall denote dky/dxk by y(k), so that (3) may be written 

(4a) L(y(k)) = 0, where k = O, 1, 2, 3, and 4. 

If the original data { YJ} have a different scale and origin, so that Ifi = aYi + b, 
the new solution of (4) should be y = ay + b, and since f is the same function of 
y that it was of y, (1) becomes 

a f(y, y', y") dx = O, 
$1 
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with corresponding end conditions, and (4a) becomes 

(4b) L (9(k)) = 0. 

The function L in (4b) is the same function of 8(k) as it is of the y(k) in (4a). Thus 
the differential equations represented by (4a) and (4b) have the same structure, 
and therefore the same family of solutions, but the boundary conditions will be 
different in the two cases. Therefore, we seek a differential equation (4a) which 
has solutions y(x) and y(x) = ay + b, where a and b are arbitrary and inde- 
pendent parameters (except that a 5z? 0). 

Taking a = 1 and b # 0 in (4b), and subtracting (4a), we have 

(5a) L(y + b, y(k)) - L(y, y(k)) = 0, (k = 1, 2, 3, 4), 

when L = 0. Dividing (5a) by b, and taking the limit as b approaches 0, we obtain* 

(6a) aL(y(k))/ly = O, when L = 0 (k = 0, 1, 2, 3, 4) 

Taking b = 0 and a = 1 + e in (4b), and subtracting (4a), we have 

(5b) L(y(k) + Ey(k)) - L(y(k)) = 0, when L = 0. 

Dividing (5b) by E, and taking the limit as e approaches 0, we obtain 

(6b) EZy() aL = 0 if L = 0. 

Equation (4a) may be written 

(7) L(y(k)) = L'(y Y(1) Y(2) y(3)) 
+ f22 Y(4) = 0, 

where we have introduced the notation o2f/oy(')oy(j) = fj , etc., so that f22= 

&2f/(dy")2. From (7), letting Lo = dL/dy, etc., 

(8) Lo= Lo + fo22 (Y) 

From (7) and (8), we obtain 

f22Lo- fo22L= f22Lo - fo22L' = G(y, y(1)I y(2), y(3)). 

Now, when L = 0, dL/dy = Lo = 0 also, so that G = 0 whenever y is a solution 
of (4a). However, G = 0 is a differential equation of lower order than L = 0, 
so that not all the solutions of L = 0 are solutions of G = 0, unless G is identically 
zero, or 

(9) f22Lo- fo22L _ . 

3. Case I f22 - 0 at any point. (We consider the case f22 0 in Case II.) 
Then (9) may be written 

(10) aL/dy gL, 

where g(y, y(l), y(2)) = fo22/f22 . We also have in this case 

* We assume here and in what follows that all the indicated partial derivatives of f and L 
exist, and moreover, that their mixed partial derivatives are equal. 
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(11) d(L/f22)/dy =0, so that L/f22 is independent of y. 

Writing out the Euler-Lagrange equation (4a) in our notation, 

L = 
fo _ y(l)fol _ y(2)fil + y('1(y(l'foo2 + 2y (2)fo1 + 2y(3)fo22) 

+ y( 2 (fO2 + Y (2)fl + 2y (3)f)22 + ( (3) )2222 + Y (4)f22 = 0 

Substituting this expression into the identity (9), and equating terms in y (4), 

(y(3))2, and Y(3), we obtain 

(13a) f022-- f22 

(13b) fo222-g f222 

(13c) ~ ~ ~ 1) (2) _ (1) (2) (13c) 8lY)foo22 + Y f)?122 g(Y )f022 + Y f122) 

Operating on (13a) with a/ay(2) and comparing with (13b), since f22 is never 0, 
we obtain ag/ay 2)-O, so that g is at most a function of y and y(l). Operating on 
(13a) with y(1)a/ay, and also with y(2) a/ay(), and adding, 

y(1 f 2 y(2)f _ ((1) -g + y(2) ag ( +(2 Y )fO22 Y ?122 Y ay ' dy(1j f22 ' /( )fo22 + Y 1f22) 

Thus, y('02g/dy + y(2)ag/ay(') _ 0, by subtraction of (13c). But since g is not a 
function of y(2), ag/Oy(l) must be identically zero, and therefore also dg/dy; thus g 
is a constant. 

Let E be defined by the expression 

(14) E = f22 () Y L - 22 + E y fj22 L 
k=O ayl) 1\ = 0f2)L 

which, from (6b), is zero when L = 0. Using (7) and (9), equation (14) can be 
rewritten, since all the terms in y (4) cancel, as 

(15) E = f22 Z Y dy f2 + Z: Y(j)fi22) L' =0. ( 15) 
~~~~~~k=1 ay (k) ( 

j=1 

Regarded as a differential equation in y, (15) is of lower order (third) than 

L(y(k)) = 0, 

but must be 0 when L = 0. Hence, E -0, and we may rewrite (14), using (10), as 

(16) Z 
ay( k )- (h - gy)L, 

where h(y, y y( ))= (Y fO22 + Y (lf122 + Y(2)f222 + f22)/f22 . Substituting (12) 
into (16), and equating terms in y(4), (y(3))2, and y(3), 

(17a) y~f ?122 + y2 )f222 (h-gy-1)f22, 

(17b) Y ')f1222 + Y (f2222 (h - gy - 2)f222, 

(17c) (y1 ) 2fO122 + YY(f1122 + fo222) + I (y(2))2f1222 

-= (h - gy - 2) (y 1fm22 + Y(2)yf22). 

Operating on (17a) with a/ly(2) and combining with (17b), we obtain ah/ay(2)-0, 
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and in a manner analogous to that used with equations (13), we find that h is 
also a constant. 

From (13a), f22 may be written 

(18) f22 = egYw(y(1), Y(2)) 

where w is some function of y(1) and y(2), and is never 0 in this case. Substituting in 
(17a), we get 

(19) h-gy-1-1h - gy - 1 = 1 + y(2)dw/dy(2). 

Since the right side of (19) is a function of y(l) and y(2) only, this implies that 
g = 0. Thus, aL/dy 0, or L is not a function of y. Then (16) becomes 

4 

(20) Z y(k)aLl/y(k) hL, 
k=1 

so that L is a homogeneous function of degree h in dy/dx, d2y/dx2, d3y/dx3, and 
d4y/dx4, and does not contain y explicitly. 

Using (18), we may write f in the form 

(21) f = W(y(')2 y(2)') + y(2)U + V, 

where W22 = w(y(1), y(2)), u = u(y, y(l)), and v = v(y, y(l)), and u and v are ar- 
bitrary. Equation (17a) becomes 

(1) df22 + y(2) af22 = (1) aw + y(2) aw - (h - l)w 

so that w is homogeneous of degree h - 1 in y(1) and y(2). We next show that u 
and v can be chosen so that W(y('), y(2) ) is a homogeneous function of degree h + 1. 

W(y(1), y(2)) can be written, by a power series expansion in y(2) with a remainder 
term, 

(22) W(y~(1)2 (2)) = W(y(1) 0) + W2(y(I), O)y(2) + W22(Y , 
( 

y )(y2) /2! 
where W2 = aW/dy(2), etc., and 0 < 0 < 1. Since W22(y(1), oy (2) = w(y(1), y(2) ) 
is homogeneous of degree h - 1 in its variables, the last term in (22) is homogene- 
ous of degree h + 1 in y(1) and y(2)* Since u and v are arbitrary, they may be chosen 
so that the first two terms of W are also homogeneous of degree h + 1, and we 
have the desired result. 

Sincefo22 = 0, the Euler-Lagrange equation (12) becomes 

L fo _ y(1)'fo _ y(2)fil + y(1)(y(1)foo2 + 2y(2 fo12) 

(23) + (2)(f + 
(2)f112+ 2y(3)f22) + (Y(3))2f222 4f22= 0. 

Sincef22 = w is homogeneous of degree h - 1 in y(l) and y(2), the terms y(2)y(3)f122 

(Y(3) )2 f222 , and y(4 )f22 are homogeneous of degree h in y(l), y(2), y(3), and y(4). L is 
also homogeneous of degree h, and therefore, if L" is defined by 

L" = L - 2y( ~y~ Af122 - (Y( )f222 - Y 4f22 

L" must also be homogenieous of degree h in y(l), y(2). Also, L and f22 do not contain 
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y explicitly; thus dL"/dy 0. Using (21), L" becomes 

L" = 2y(2)uo + vo - y(1) Vol - y(2) (TwVl + V1l) 

+ y(1)(y(l)uoo + y(2) uoi) + y ((2)) W112. 

Since W is homogeneous of degree h + 1 in y(1) and y(2), _y(2)W11 + (y(2))2TW112 
is homogeneous of degree h in y(l) and y(2) and does not contain y; therefore 

y (2)(2uo + Y yuol - vil) + Vo - y Vol + (Y (')2Uoo 

must be homogeneous of degree h in y(l) and y(2), and does not contain y. 
The terms vo - y(l)Vol + (Y(1) )2Uoo do not contain y(2), so that they must be ini- 

dependent of y, and homogeneous of degree h in y(l). The terms 2uo + y(1)uo -vll 
must be independent of y and homogeneous of degree h - 1 in y(l). These conditions 
result in the following equations 

(24a) 2uoo + y1uooi - Voii= 0, 

(24b) Vo- y() Vooi + (ye) Uooo 0, 

(24c) 3y(1)uoi + (yU1o)2uo-y _ (h - 1)(2uo + y(')uo - vll), 

(24d) (y(l)3uool + 2(y(l))2u =- (y('))2vo_ h(vo - 1 +y(yvo)2U 

It can be shown that a general solution of these equations is given by the relation 

(25) v = y(l) f uo dy 1) + c1(y(1))h+l + y(1)2 (y) + c2, 

where r(y) is an arbitrary function, c1 and c2 are arbitrary constants, and y is 
fixed in f uo dy('). 

Now f can be written 

(26) f = W(y 1), y(2)) + Y(2)u + y(l) f uo dy(') + y(l)r(y) + c2 

where the term c1(y(1))h+l has been incorporated into W. 
Let (y, y(1), x) = f udy(1) + R(y) + c2x, where dR/dy = r(y). Then, 

db/dx = y(l)f uo dy(l) + y(l)r(y) + Y(2)U + c2, and f can be written 

(27) f = W(y(1), y(2)) + d>b/dx, 

where W is homogeneous of degree h + 1 in y(l) and y(2). The term do/dx will not 
contribute to the Euler-Lagrange differential equation. Thus if we substitute the 
result (27) into (1), it is simple to verify that the resulting Euler-Lagrange equa- 
tion will not contain y, and will be homogeneous of degree h in y(l), y(2), y(3), y(4) 

so that both y and y = ay + b will be solutions. 
Thus we have established the theorem: A necessary and sufficient condition that 

the function f used in the smoothing criterion bfXn f(y, y, y") dx = 0, with y and 
dy/dx known at x1 and Xn , result in a smooth function y(x) which is independent of 
origin and scale changes in the given data is that 

f = W(y', yf) + do(x, y, y ) where, 2oauodx 

where a 2f/ (ay, ) 2Ft' 0, and W is a homogeneous function of y' and y". 
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4. Case Il. a2f/ (dy') 2 0. 
In this degenerate case, f may be written, in our previous notation, 

f(y, Y(1) y(2)) = p(y, y(l)) + q(y, y(l))y(2) 

and the Euler-Lagrange expression is 

(28) L = y (2(2qo - Pi + y(')qol) + Po - Po y(l) + (y(l))2q2 

If the expression (28) is set equal to 0, a second-order ordinary differential equation 
results, and its solution y(x) cannot in general satisfy four conditions at x1 and 
Xn . The variational equation (2) becomes here 

(29) f Lay dx + (pi - qo y 1)ay x + q y1)X = 0. 
X1 

If we know the values of y at xi and xn, which is the case if the smooth function 
y is to have the values Y1 and Yn at the end points, then (29) becomes 

(30) f Lay dx + q y(1) Xn = 0. 
X1 

Since by is arbitrary in the interval (xl , xn), (30) requires L = 0 and qay (1) Xn 0= 
But if by(l) is arbitrary at the end points, q must be 0 there. Then either q 0, 
or q = 0 at the end points. But if q is 0 only at the end points, f must be a function 
of the particular end points of the problem and if a different set of data points 
{ Yi} were used, f would have to be changed. Therefore, we shall consider here only 
the case q 0, and ay = 0 at x1,ix.X 

Thus, f = p(y, y(1)), and the Euler-Lagrange equation becomes 

(31) L = po-y()poi- y(2)Pii = 0. 

The analysis leading to conditions (6a) and (6b) gives, in this case, 

(32a) aL/ay = 0, when L = 0, 
2 

(32b) Z y(k)aOL/ay(k) = 0, when L = 0. 
k=O 

Writing (31) as 

(33) L = L + s y(2), 

then, by procedures similar to those used in obtaining (11), we find, if s z 0, 

(34) @L>O, a (L >O. 

Note. If s -= 0, p = y(')A(y) + B(y). But A(y)y(l) is an exact derivative, and 
does not contribute to the Euler-Lagrange equation, which in this case would be 

* Also, if f = p + y"q, minimization of ff dx can occur with large oscillations in y", 
since positive and negative contributions to the integral may cancel. In certain tests which 
were performed, this resulted in large oscillations in the smoothing curve, which we wish to 
avoid. 
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aB/ay = 0. This result is of no interest in smoothing, and therefore the case s= 0 
will be ignored here. 

Since L'/s is independent of y, 

L'/s= -z(y"'), or 

(35) / 
-sz(y(,, = 

where z is an arbitrary function of y(l). Then 

(36) L = s(y(2) _ Z(-(1) 

Since s # 0, the resultant differential equation in y is 

(37a) y- z(y') = 0. 

Substituting the result (36) into condition (32b), we obtain also 

(37b) (y So + y(I,Si) (y(2) _ Z) + s(y(2) _ y(1)zl) = 0, when L 0. 

But when L = o, (2) = Z, and therefore y(2) _ y zi must be 0 also. This requires 
either: 

A. dz/dy' = z/y'. 
This equation yields z = Cy'. The Euler-Lagrange equation (37) then becomes 

(38) y" -Cy' = O, 

which has as its solution 

(39) y= aeC +B. 

The constant C is fixed by the particular form of f, and therefore cannot vary be- 
tweeni different pairs of data points. If the smoothing curve y(x) must pass through 
the given data { Yi}, then a and 3 are fixed by these conditions for each interval, 
and therefore y' will in general not be continuous. Since discontinuities in y' are 
not compatible with the concept of smoothness, the solution (39) is not satisfactory. 

B. z = 0. 
This condition satisfies (37a) and (37b) if y" = 0, which requires that y(x) be 

a straight line between each pair of data points. Since this also results in discon- 
tinuities in y', the case &2f/ (&y")2 = 0 seems of no interest in the smoothing prob- 
lem. 

Note. This same conclusion may be drawn from equation (37a) without appli- 
cation of condition (32b), since this equation may be integrated twice to give y 
as a two-parameter function of x. Use of (32b) gives us the exact form of that 
function, but the same drawback exists in either case. 

5. Conclusions. Given a set of data { Yi } for which a "smooth" function y(x) 
is desired. This function y is to be obtained by a minimization criterion of the form 

f f(y, y', y") dx = 0, where y and y' are known at the end points, and 

,a2f l) 2 54_ 0. 

Then a necessary and sufficient condition that the solution y(x) of the resultant 
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Euler-Lagrange ordinary differential equation become ay + b when Yi is replaced 
by aYi + b is that f be of the form, 

f = W(y', y") + dc(y, y', x)jdx, 

where W is a homogeneous function in y' and y". Since do/dx does not contribute 
to the Euler-Lagrange equation for y(x), it may be ignored. Also, f (or W) should 
not be chosen linear in y". 

6. Applications. The simplest Lagrangian function f(y', y") satisfying the re- 
quirements set forth above would seem to be f = (y") 2. This choice appears to 
have been studied first by Holladay j1], and used first in smoothing by Podolsky 
[2]. It has also been used by Phillips [3] in the numerical solution of linear integral 
equations of a certain kind. Cook [4] has used f = (y')2 and f = (y")2, both of 
which satisfy the criterion given here, in the numerical solution of a linear integral 
equation arising in the analysis of the photonuclear yields from bremstrahlen. 
Except in [4], where the author was aware of the present work, the choice f = (yll)2 
seems to have been made for simplicity, or because, if y' << 1, (y" )2 iS approxi- 
mately the square of the curvature, which is a natural quantity to minimize if one 
is seeking a "smooth" curve. However, if f is the square of the curvature, it will 
not satisfy our criterion. 

The result of the choice f = (y" )2 leads, of course, to the Euler-Lagrange equa- 
tion 

(40) y(4) 
= 

so that the smooth curve is a set of cubic functions, which may be adjusted to give 
continuity of y and certain derivatives at or near the data points. 

The simplicity, approximation to curvature, and fact that it satisfies the in- 
variance properties studied here (which are to be expected for any "smooth" 
curve associated with our data) make the choicef = (y" )2 a natural one; the re- 
sults thus obtained show this choice is also a good one. 
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